Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Clin Transl Sci ; 7(1): e6, 2023.
Article in English | MEDLINE | ID: covidwho-2236701

ABSTRACT

COVID-19 reinforced the need for effective leadership and administration within Clinical and Translational Science Award (CTSA) program hubs in response to a public health crisis. The speed, scale, and persistent evolution of the pandemic forced CTSA hubs to act quickly and remain nimble. The switch to virtual environments paired with supporting program operations, while ensuring the safety and well-being of their team, highlight the critical support role provided by leadership and administration. The pandemic also illustrated the value of emergency planning in supporting organizations' ability to quickly pivot and adapt. Lessons learned from the pandemic and from other cases of adaptive capacity and preparedness can aid program hubs in promoting and sustaining the overall capabilities of their organizations to prepare for future events.

2.
Lancet Digit Health ; 4(7): e532-e541, 2022 07.
Article in English | MEDLINE | ID: covidwho-1852294

ABSTRACT

BACKGROUND: Post-acute sequelae of SARS-CoV-2 infection, known as long COVID, have severely affected recovery from the COVID-19 pandemic for patients and society alike. Long COVID is characterised by evolving, heterogeneous symptoms, making it challenging to derive an unambiguous definition. Studies of electronic health records are a crucial element of the US National Institutes of Health's RECOVER Initiative, which is addressing the urgent need to understand long COVID, identify treatments, and accurately identify who has it-the latter is the aim of this study. METHODS: Using the National COVID Cohort Collaborative's (N3C) electronic health record repository, we developed XGBoost machine learning models to identify potential patients with long COVID. We defined our base population (n=1 793 604) as any non-deceased adult patient (age ≥18 years) with either an International Classification of Diseases-10-Clinical Modification COVID-19 diagnosis code (U07.1) from an inpatient or emergency visit, or a positive SARS-CoV-2 PCR or antigen test, and for whom at least 90 days have passed since COVID-19 index date. We examined demographics, health-care utilisation, diagnoses, and medications for 97 995 adults with COVID-19. We used data on these features and 597 patients from a long COVID clinic to train three machine learning models to identify potential long COVID among all patients with COVID-19, patients hospitalised with COVID-19, and patients who had COVID-19 but were not hospitalised. Feature importance was determined via Shapley values. We further validated the models on data from a fourth site. FINDINGS: Our models identified, with high accuracy, patients who potentially have long COVID, achieving areas under the receiver operator characteristic curve of 0·92 (all patients), 0·90 (hospitalised), and 0·85 (non-hospitalised). Important features, as defined by Shapley values, include rate of health-care utilisation, patient age, dyspnoea, and other diagnosis and medication information available within the electronic health record. INTERPRETATION: Patients identified by our models as potentially having long COVID can be interpreted as patients warranting care at a specialty clinic for long COVID, which is an essential proxy for long COVID diagnosis as its definition continues to evolve. We also achieve the urgent goal of identifying potential long COVID in patients for clinical trials. As more data sources are identified, our models can be retrained and tuned based on the needs of individual studies. FUNDING: US National Institutes of Health and National Center for Advancing Translational Sciences through the RECOVER Initiative.


Subject(s)
COVID-19 , Adolescent , Adult , COVID-19/complications , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , Machine Learning , Pandemics , SARS-CoV-2 , United States/epidemiology , Post-Acute COVID-19 Syndrome
3.
Journal of Clinical and Translational Science ; 6(s1):35, 2022.
Article in English | ProQuest Central | ID: covidwho-1795916

ABSTRACT

OBJECTIVES/GOALS: As question complexity in science and medicine increase, the need for teams with diverse skill sets grows as well. We identify essential roles and barriers that define the team environment within the National COVID Cohort Collaborative (N3C), an initiative grounded in interdisciplinary team science. METHODS/STUDY POPULATION: This work was compiled through a combination of observations, interviews, and survey responses involving members of the N3C research community, specifically those involved in N3C workstreams and clinical domain teams. Observational data was obtained through participation in N3C workstream activities and domain team research and meetings. The survey included five questions related to team science elements and barriers, as well as contrasting science-based teams and non-science-based teams, such as “What elements are common between both Team-Science and non-Team-Science teams?”, and was sent to members of two domain teams: Immunosuppressed and Compromised and Social Determinants of Health. RESULTS/ANTICIPATED RESULTS: Team science within N3C has a unique structure of roles and barriers that define the team environment of each project. Within each group, team and role management within team science is an ongoing process that occurs even after a team is formed. We obtained 8 survey responses that indicated communication, attribution, team management, collaboration, interdisciplinary diversity, and problem solving were key aspects to successful team science. Additionally, survey respondents identified prominent barriers to successful team science that included bandwidth constraints, lack of a shared scientific language, learning curves, funding, and lack of communication. DISCUSSION/SIGNIFICANCE: Communication was identified as a key component of team science and a prominent barrier, which indicates that successful team science relies on communication between team members. Thus, it is vital that teams identify and commit to using predefined methods of communication to function effectively.

4.
Journal of clinical and translational science ; 5(Suppl 1):70-70, 2021.
Article in English | EuropePMC | ID: covidwho-1711070

ABSTRACT

IMPACT: This work will inform the ongoing development of adaptive capacity and preparedness of the CTSA Program and other clinical and translational research organizations in their quest of improving processes that drive outcomes and impacts, shaping effective programs and services, and strengthening their emergency readiness and sustainability. OBJECTIVES/GOALS: -Share the progress and preliminary findings of an ‘Adaptive Capacity and Preparedness of CTSA Hubs’ CTSA Working Group;-Improve our awareness and understanding of the efficient and effective changes helping CTSA hubs build robust capacity to address METHODS/STUDY POPULATION: A multi-case study including: - Triangulating multiple sources of information and mixed methods (survey/interviews of research administrators, researchers, evaluators, and other key stakeholders), literature review, document and M&E system information analysis, and expert review;- Describing CTSA hubs’ experiences as related to research implementation, translation, and support during the time of emergency;- Administering a comprehensive survey of the CTSAs addressing their challenges, lessons learned, and practices that work in various program components/areas. Data collection includes aggregate and cross-sectional data, with representation based on CTSA size, maturity, and population density. RESULTS/ANTICIPATED RESULTS: The described approach shows sound promise to investigate and share strategies and best practices for building adaptive capacity and preparedness of CTSAs -- across various scientific sectors, translational research spectrum, and the goals outlined by NCATS for the CTSA program. The anticipated results of this research will include the identified/shared innovative solutions and lessons learned for this rapidly emerging, high-priority clinical and translational science issue. ‘High-quality lessons learned’ are those that represent principles extrapolated from multiple sources and triangulated to increase transferability to new contexts and situations. DISCUSSION/SIGNIFICANCE OF FINDINGS: The project provides useful knowledge and tools to research organizations and stakeholders across multiple disciplines -- for mitigating the impact of the COVID-19 disaster via effective adjusting programs, practices, and processes, and building capacity for future successful, ‘emergency ready and responsive’ research and training.

5.
JAMA Netw Open ; 5(2): e2143151, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1669321

ABSTRACT

Importance: Understanding of SARS-CoV-2 infection in US children has been limited by the lack of large, multicenter studies with granular data. Objective: To examine the characteristics, changes over time, outcomes, and severity risk factors of children with SARS-CoV-2 within the National COVID Cohort Collaborative (N3C). Design, Setting, and Participants: A prospective cohort study of encounters with end dates before September 24, 2021, was conducted at 56 N3C facilities throughout the US. Participants included children younger than 19 years at initial SARS-CoV-2 testing. Main Outcomes and Measures: Case incidence and severity over time, demographic and comorbidity severity risk factors, vital sign and laboratory trajectories, clinical outcomes, and acute COVID-19 vs multisystem inflammatory syndrome in children (MIS-C), and Delta vs pre-Delta variant differences for children with SARS-CoV-2. Results: A total of 1 068 410 children were tested for SARS-CoV-2 and 167 262 test results (15.6%) were positive (82 882 [49.6%] girls; median age, 11.9 [IQR, 6.0-16.1] years). Among the 10 245 children (6.1%) who were hospitalized, 1423 (13.9%) met the criteria for severe disease: mechanical ventilation (796 [7.8%]), vasopressor-inotropic support (868 [8.5%]), extracorporeal membrane oxygenation (42 [0.4%]), or death (131 [1.3%]). Male sex (odds ratio [OR], 1.37; 95% CI, 1.21-1.56), Black/African American race (OR, 1.25; 95% CI, 1.06-1.47), obesity (OR, 1.19; 95% CI, 1.01-1.41), and several pediatric complex chronic condition (PCCC) subcategories were associated with higher severity disease. Vital signs and many laboratory test values from the day of admission were predictive of peak disease severity. Variables associated with increased odds for MIS-C vs acute COVID-19 included male sex (OR, 1.59; 95% CI, 1.33-1.90), Black/African American race (OR, 1.44; 95% CI, 1.17-1.77), younger than 12 years (OR, 1.81; 95% CI, 1.51-2.18), obesity (OR, 1.76; 95% CI, 1.40-2.22), and not having a pediatric complex chronic condition (OR, 0.72; 95% CI, 0.65-0.80). The children with MIS-C had a more inflammatory laboratory profile and severe clinical phenotype, with higher rates of invasive ventilation (117 of 707 [16.5%] vs 514 of 8241 [6.2%]; P < .001) and need for vasoactive-inotropic support (191 of 707 [27.0%] vs 426 of 8241 [5.2%]; P < .001) compared with those who had acute COVID-19. Comparing children during the Delta vs pre-Delta eras, there was no significant change in hospitalization rate (1738 [6.0%] vs 8507 [6.2%]; P = .18) and lower odds for severe disease (179 [10.3%] vs 1242 [14.6%]) (decreased by a factor of 0.67; 95% CI, 0.57-0.79; P < .001). Conclusions and Relevance: In this cohort study of US children with SARS-CoV-2, there were observed differences in demographic characteristics, preexisting comorbidities, and initial vital sign and laboratory values between severity subgroups. Taken together, these results suggest that early identification of children likely to progress to severe disease could be achieved using readily available data elements from the day of admission. Further work is needed to translate this knowledge into improved outcomes.


Subject(s)
COVID-19/epidemiology , Adolescent , Age Distribution , COVID-19/complications , COVID-19/diagnosis , COVID-19/therapy , COVID-19/virology , Child , Child, Preschool , Comorbidity , Disease Progression , Early Diagnosis , Female , Humans , Infant , Male , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Sociodemographic Factors , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/therapy , Systemic Inflammatory Response Syndrome/virology , United States/epidemiology , Vital Signs
6.
J Am Med Inform Assoc ; 29(4): 609-618, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1443051

ABSTRACT

OBJECTIVE: In response to COVID-19, the informatics community united to aggregate as much clinical data as possible to characterize this new disease and reduce its impact through collaborative analytics. The National COVID Cohort Collaborative (N3C) is now the largest publicly available HIPAA limited dataset in US history with over 6.4 million patients and is a testament to a partnership of over 100 organizations. MATERIALS AND METHODS: We developed a pipeline for ingesting, harmonizing, and centralizing data from 56 contributing data partners using 4 federated Common Data Models. N3C data quality (DQ) review involves both automated and manual procedures. In the process, several DQ heuristics were discovered in our centralized context, both within the pipeline and during downstream project-based analysis. Feedback to the sites led to many local and centralized DQ improvements. RESULTS: Beyond well-recognized DQ findings, we discovered 15 heuristics relating to source Common Data Model conformance, demographics, COVID tests, conditions, encounters, measurements, observations, coding completeness, and fitness for use. Of 56 sites, 37 sites (66%) demonstrated issues through these heuristics. These 37 sites demonstrated improvement after receiving feedback. DISCUSSION: We encountered site-to-site differences in DQ which would have been challenging to discover using federated checks alone. We have demonstrated that centralized DQ benchmarking reveals unique opportunities for DQ improvement that will support improved research analytics locally and in aggregate. CONCLUSION: By combining rapid, continual assessment of DQ with a large volume of multisite data, it is possible to support more nuanced scientific questions with the scale and rigor that they require.


Subject(s)
COVID-19 , Cohort Studies , Data Accuracy , Health Insurance Portability and Accountability Act , Humans , United States
7.
JAMA Netw Open ; 4(7): e2116901, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1306627

ABSTRACT

Importance: The National COVID Cohort Collaborative (N3C) is a centralized, harmonized, high-granularity electronic health record repository that is the largest, most representative COVID-19 cohort to date. This multicenter data set can support robust evidence-based development of predictive and diagnostic tools and inform clinical care and policy. Objectives: To evaluate COVID-19 severity and risk factors over time and assess the use of machine learning to predict clinical severity. Design, Setting, and Participants: In a retrospective cohort study of 1 926 526 US adults with SARS-CoV-2 infection (polymerase chain reaction >99% or antigen <1%) and adult patients without SARS-CoV-2 infection who served as controls from 34 medical centers nationwide between January 1, 2020, and December 7, 2020, patients were stratified using a World Health Organization COVID-19 severity scale and demographic characteristics. Differences between groups over time were evaluated using multivariable logistic regression. Random forest and XGBoost models were used to predict severe clinical course (death, discharge to hospice, invasive ventilatory support, or extracorporeal membrane oxygenation). Main Outcomes and Measures: Patient demographic characteristics and COVID-19 severity using the World Health Organization COVID-19 severity scale and differences between groups over time using multivariable logistic regression. Results: The cohort included 174 568 adults who tested positive for SARS-CoV-2 (mean [SD] age, 44.4 [18.6] years; 53.2% female) and 1 133 848 adult controls who tested negative for SARS-CoV-2 (mean [SD] age, 49.5 [19.2] years; 57.1% female). Of the 174 568 adults with SARS-CoV-2, 32 472 (18.6%) were hospitalized, and 6565 (20.2%) of those had a severe clinical course (invasive ventilatory support, extracorporeal membrane oxygenation, death, or discharge to hospice). Of the hospitalized patients, mortality was 11.6% overall and decreased from 16.4% in March to April 2020 to 8.6% in September to October 2020 (P = .002 for monthly trend). Using 64 inputs available on the first hospital day, this study predicted a severe clinical course using random forest and XGBoost models (area under the receiver operating curve = 0.87 for both) that were stable over time. The factor most strongly associated with clinical severity was pH; this result was consistent across machine learning methods. In a separate multivariable logistic regression model built for inference, age (odds ratio [OR], 1.03 per year; 95% CI, 1.03-1.04), male sex (OR, 1.60; 95% CI, 1.51-1.69), liver disease (OR, 1.20; 95% CI, 1.08-1.34), dementia (OR, 1.26; 95% CI, 1.13-1.41), African American (OR, 1.12; 95% CI, 1.05-1.20) and Asian (OR, 1.33; 95% CI, 1.12-1.57) race, and obesity (OR, 1.36; 95% CI, 1.27-1.46) were independently associated with higher clinical severity. Conclusions and Relevance: This cohort study found that COVID-19 mortality decreased over time during 2020 and that patient demographic characteristics and comorbidities were associated with higher clinical severity. The machine learning models accurately predicted ultimate clinical severity using commonly collected clinical data from the first 24 hours of a hospital admission.


Subject(s)
COVID-19 , Databases, Factual , Forecasting , Hospitalization , Models, Biological , Severity of Illness Index , Adult , Aged , Aged, 80 and over , COVID-19/ethnology , COVID-19/mortality , Comorbidity , Ethnicity , Extracorporeal Membrane Oxygenation , Female , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Pandemics , Respiration, Artificial , Retrospective Studies , Risk Factors , SARS-CoV-2 , United States , Young Adult
8.
J Am Med Inform Assoc ; 28(3): 427-443, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-719257

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) poses societal challenges that require expeditious data and knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many centers. MATERIALS AND METHODS: The Clinical and Translational Science Award Program and scientific community created N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organizations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible collaborative analytics. RESULTS: Organized in inclusive workstreams, we created legal agreements and governance for organizations and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the secure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access. CONCLUSIONS: The N3C has demonstrated that a multisite collaborative learning health network can overcome barriers to rapidly build a scalable infrastructure incorporating multiorganizational clinical data for COVID-19 analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term impacts of COVID-19.


Subject(s)
COVID-19 , Data Science/organization & administration , Information Dissemination , Intersectoral Collaboration , Computer Security , Data Analysis , Ethics Committees, Research , Government Regulation , Humans , National Institutes of Health (U.S.) , United States
SELECTION OF CITATIONS
SEARCH DETAIL